產(chǎn)品目錄
-
大疆無(wú)人機(jī)
- DJl Mavic 3
- Manti 3多光譜版
- DJI Flycart30運(yùn)載無(wú)人機(jī)
- 智能
- 四段拋投器
- 大疆機(jī)場(chǎng)2
- 禪思L2
- 運(yùn)載無(wú)人機(jī)
- 經(jīng)緯M350RTK
- GL60 Plus
- 降落傘OWL
- MP130S
- H20N
- M300RTK
- 精靈4RTK SE
- M30
- M30T
- M3M
- 高交會(huì)
- H20
- 大疆M3T無(wú)人機(jī)
- M3T
- M3E
- 軟件
- 智圖
- UTC
- 禪思H20T
- 大疆司空2
- 禪思20N
- 停機(jī)坪
- 經(jīng)緯M30
- L1激光雷達(dá)
- M300+L1
- 悟2
- 御2行業(yè)進(jìn)階版
- 禪思P1
- 經(jīng)緯M300 RTK
- 精靈p4 RTK
- 植保無(wú)人機(jī)
- 大疆M210RTK V2無(wú)人機(jī)
- 精靈4多光譜無(wú)人機(jī)
-
產(chǎn)品中心
精靈 4多光譜數(shù)據(jù)的輻射定標(biāo)方法
精靈 4多光譜數(shù)據(jù)的輻射定標(biāo)方法精靈 4 多光譜版是一款配備一體式多光譜成像系統(tǒng)的航測(cè)無(wú)人機(jī),可采集高精度多光譜數(shù)據(jù),助力農(nóng)業(yè)監(jiān)測(cè)與環(huán)境監(jiān)察工作高效完成。
精靈 4多光譜數(shù)據(jù)的輻射定標(biāo)方法
大疆精靈4多光譜無(wú)人機(jī)的輻射校正和定標(biāo)方法,給出了DN值向波譜輻射亮度的轉(zhuǎn)換公式以及鏡頭暗角的改正公式。
2019年9月,DJI發(fā)布了精靈4多光譜無(wú)人機(jī)(Phantom4-M,P4M),為遙感用戶提供了會(huì)飛的多光譜相機(jī)和相應(yīng)的數(shù)據(jù)處理軟件——大疆智圖,其中多光譜相機(jī)成像波段參數(shù)如表1所示。
飛行器+相機(jī)+數(shù)據(jù)處理軟件的集成方式提高了無(wú)人機(jī)多光譜解決方案的集成度,降低了對(duì)用戶專(zhuān)業(yè)技能水平的要求,可以方便快捷地獲取被監(jiān)測(cè)區(qū)域的鑲嵌圖及其植被指數(shù)。直接提供遙感指數(shù)產(chǎn)品,隱藏?cái)?shù)據(jù)處理的技術(shù)細(xì)節(jié),對(duì)于遙感應(yīng)用的初、中級(jí)用戶來(lái)說(shuō)無(wú)疑是十分有益的。遙感用戶無(wú)需再學(xué)習(xí)和理解指數(shù)產(chǎn)品的生成方法,與使用普通數(shù)碼相機(jī)一樣,所見(jiàn)即所得地拍攝到了植被指數(shù),從而推動(dòng)遙感從科學(xué)技術(shù)向應(yīng)用技術(shù)轉(zhuǎn)變。
事物總有兩個(gè)方面,一類(lèi)用戶傾向于全自動(dòng),那么必然有另外一類(lèi)用戶追求處理過(guò)程的自主可控,與傾向于全自動(dòng)獲取數(shù)據(jù)產(chǎn)品的用戶相比,他們?cè)谟眠b感方法解決實(shí)際問(wèn)題時(shí),往往會(huì)產(chǎn)生更多思考。多光譜相機(jī)如實(shí)記錄拍攝時(shí)刻的地物反射情況,數(shù)據(jù)分析軟件處理并得出結(jié)論,當(dāng)我們需要重新審視該結(jié)論或發(fā)現(xiàn)更好的處理方法時(shí),可以重新對(duì)原始數(shù)據(jù)做處理,得出新的結(jié)論。這就要求有條件的多光譜行業(yè)用戶要從自身業(yè)務(wù)特點(diǎn)出發(fā),建立各自的遙感分析系統(tǒng),逐步總結(jié)地表反射率、遙感指數(shù)與所關(guān)注物理量之間的關(guān)系,研究并完善遙感定量分析模型,形成不同地域、不同觀測(cè)條件以及不同應(yīng)用時(shí)期的個(gè)性化遙感監(jiān)測(cè)系統(tǒng)。
個(gè)性化遙感監(jiān)測(cè)系統(tǒng)的建設(shè)離不開(kāi)高質(zhì)量遙感專(zhuān)題產(chǎn)品,而高質(zhì)量遙感專(zhuān)題產(chǎn)品的基礎(chǔ)是輻射定標(biāo)。下面將著重闡述P4M輻射定標(biāo)的基本原理和具體方法。
地表反照率是指地面反射輻射量與入射輻射量之比,表征地面對(duì)太陽(yáng)輻射的吸收和反射能力。反照率越大,地面吸收太陽(yáng)輻射越少,反照率越小,地面吸收太陽(yáng)輻射越多。多光譜相機(jī)在對(duì)地成像時(shí)(如圖1所示),太陽(yáng)輻射以天頂角θi、方位角?i到達(dá)地物,部分輻射被地物吸收,其余輻射被反射回天空半球。
在圖1中,地物點(diǎn)p的半球反射量中處于多光譜相機(jī)鏡頭視場(chǎng)角范圍的那部分會(huì)照射到相機(jī)傳感器上,其強(qiáng)度用波譜輻射亮度描述。以傳感器上某一像素為例,來(lái)自地物點(diǎn)p方向?yàn)椋é葀,?v)的反射光線經(jīng)相機(jī)鏡頭到達(dá)傳感器,被量化為整數(shù)DN保存下來(lái)。影像DN值是傳感器量化后的整數(shù)值,雖然與入射波譜輻射亮度有關(guān),并且傳感器一般采用線性量化,但是DN仍然不是一個(gè)具有實(shí)際意義的物理量。早期的遙感分析系統(tǒng)一般利用DN值直接估計(jì)地表特征量,然而將其轉(zhuǎn)換為波譜輻射亮度將更有助于遙感分析。
波譜輻射亮度描述的是單位立體角和單位面積上的能量,單位是W/cm2/sr/um,記作L(θ,?)。在圖1中,令從太陽(yáng)出發(fā)到達(dá)地物點(diǎn)p的輻射能量為E0(θi,?i),地物點(diǎn)p向半空反射的總能量如式(1)所示。
由反照率定義可知,反照率如式(2)所示。
傳感器觀測(cè)方向上點(diǎn)p的二向反射率如式(3)所示。
結(jié)合圖1和式(3)可以看出,照射相機(jī)傳感器的波譜輻射亮度與地表二向反射率有關(guān),是地物點(diǎn)在傳感器觀測(cè)方向的反射率與入射輻射能量的乘積。傳感器廠商一般會(huì)提供DN值向波譜輻射亮度轉(zhuǎn)換的公式,只要求得入射輻射能量即可得到地物反射率。
入射輻射能量可以通過(guò)大氣輻射傳輸模型計(jì)算得到,然而卻是十分復(fù)雜的,一般采用相對(duì)法求取。前文[1]在介紹RedEdge相機(jī)輻射定標(biāo)時(shí),首先求取了多光譜影像中灰板像素的波譜輻射亮度的平均值,由于灰板反射率已知,可通過(guò)式(4)計(jì)算出多光譜相機(jī)拍攝灰板的時(shí)刻太陽(yáng)的輻射能量。
式中,L_(θi,?i,θv,?v)為灰板的波譜輻射亮度平均值,Rpan為已知的反射率。從前面的分析可以看出,反射率,更確切的說(shuō)是二向反射率,即與太陽(yáng)輻射入射角度有關(guān),也與傳感器觀測(cè)角度有關(guān),式(4)對(duì)此做了簡(jiǎn)化,近似地將灰板反射率測(cè)定時(shí)的二向反射率看作多光譜相機(jī)輻射定標(biāo)時(shí)的二向反射率。接著按照式(5)計(jì)算每一個(gè)像素的二向反射率。
式(5)同樣對(duì)二向反射率做了簡(jiǎn)化,近似地將每幅影像成像時(shí)的太陽(yáng)入射角看作是恒定的,并且忽略了相機(jī)姿態(tài)角對(duì)二向反射率的影響。
RedEdge的二向反射率求取方法同樣適合P4M。但是,P4M的資料顯示,飛機(jī)頂部的光照傳感器可以替代輻射定標(biāo)灰板,使得不同時(shí)相間影像的波譜輻射亮度具有可比性。光照傳感器記錄了入射光波譜輻射亮度,數(shù)值保存在xmp的drone-dji:Irradiance字段中,觀察實(shí)際數(shù)據(jù)可以發(fā)現(xiàn),xmp的Camera:SunSensor字段同樣保存了該數(shù)值。
接下來(lái),如何由影像DN值計(jì)算傳感器觀測(cè)方向的波譜輻射亮度是輻射定標(biāo)的關(guān)鍵問(wèn)題。2020年7月,DJI發(fā)布了《P4 Multispectral圖像處理指南》[2],指出波譜輻射亮度的計(jì)算方法如式(6)所示。
式中,x、y分別為像素在影像上的列、行數(shù);p(x,y)為該像素的DN值,pbl為快門(mén)關(guān)閉時(shí)傳感器的背景亮度;g為傳感器增益,數(shù)值取xmp中的drone-dji:SensorGain字段值; 為波段傳感器光強(qiáng)敏感度相對(duì)于NIR波段的改正量,數(shù)值取drone-dji:SensorGainAdjustment字段值,由于NIR波段為基準(zhǔn)波段,該改正量被記作0,實(shí)際計(jì)算時(shí)須改正為1.0;te為輻照時(shí)間,數(shù)值取xmp中的drone-dji:ExposureTime字段值,計(jì)算時(shí)須乘以1e-6完成單位換算。V(x,y)的作用是改正鏡頭暗角效應(yīng)(Vignetting),如式(7)所示。
式中,r為半徑,x、y分別為像素在影像上的列、行數(shù),x0、y0為改正模型的對(duì)稱(chēng)中心。通過(guò)計(jì)算可以發(fā)現(xiàn),P4M的暗角效應(yīng)達(dá)到了50%。
圖2為輻射定標(biāo)前后的多波段合成影像圖。
在圖2中,原始影像DN值經(jīng)輻射定標(biāo)轉(zhuǎn)換為波譜輻射亮度,結(jié)合光照傳感器參數(shù),進(jìn)一步將波譜輻射亮度轉(zhuǎn)換為光照傳感器平均值對(duì)應(yīng)的波譜輻射亮度,改正了由輻射入射條件不同引起的傳感器波譜輻射亮度差異。然而這些是不能從圖2中直接目視得到的,能從圖2看出的是,改正暗角效應(yīng)后,影像中心部位的亮斑被顯著弱化,四周亮度明顯提升,整體明暗趨于一致。
結(jié)論:輻射定標(biāo)是遙感定量分析的重要基礎(chǔ)。在介紹輻射定標(biāo)基本原理的基礎(chǔ)上,給出了P4M波譜輻射亮度和Vignetting改正的計(jì)算方法。
精靈 4多光譜數(shù)據(jù)的輻射定標(biāo)方法